Preview

Bulletin of the Khalel Dosmukhamedov Atyrau University

Advanced search

TRANSFORMATION OF A BOUNDARY VALUE PROBLEM ON A GRAPH INTO A BOUNDARY VALUE PROBLEM FOR A SYSTEM

https://doi.org/10.47649/vau.2020.v59.i4.18

Abstract

Differential equations found in different applications, can be interpreted as equations in graphs. There is good reason to argue that the theory of such equations can be applied on a large scale, and on the other hand, the properties of the graph can be used to create a qualitative theory of such equations and methods for solving them. The first graph model was used in chemistry. The development of the theory of differential operators in graphs has occurred recently, most of the research in this area has been carried out in the last two decades.
Differential operators in graphs appeared in chemistry, physics and engineering (nanotechnology) and are of mathematical interest. Applications of differential operators in graphs include the theory of free electrons of conjugated molecules in chemistry, quantum wires and quantum chaos, scattering theory, and photonic crystals.
Many function spaces are defined on graphs. Using these spaces of functions and differential systems, we define boundary value problems in graphs. In this article, we consider the transformation of a boundary value problem on a graph into a boundary value problem for a differential system. To do this, we have transformed each edge of the graph into the interval (0, 1) and redefined the differential equation on the graph. Then we changed the boundary conditions in accordance with the interval and established a connection between the original boundary value problem and the newly obtained boundary value problem.

About the Authors

E. S. Zhakatay
Atyrau University named after Kh.Dosmukhamedov
Kazakhstan

 2nd year Magistracy student in speciality 7M05401-Mathematics and Computer sciences

060011, Atyrau 



N. K. Shazhdekeeva
Atyrau University named after Kh.Dosmukhamedov
Kazakhstan

 candidate of physical and mathematical sciences, head of a department

060011, Atyrau 



A. B. Raissov
Atyrau University named after Kh.Dosmukhamedov
Kazakhstan

 1st year Magistracy student in speciality 7M05401-Mathematics and Computer sciences

060011, Atyrau 



References

1. Ore O. Teorija grafov. – M.: Nauka. Gl. red. fiz.-mat. lit., 1980. – 336 s.

2. Berzh K. Teorija grafov i ee primenenie. - M.: Izd-vo inostr. lit., 1962. – 320 s.

3. Shazhdekeeva N.K., Ajғabyl M., Batyrhanov A.G. Graftar teorijasyndaғy esepterdің differencialdau әdіsі// IV Mezhdunarodnaja nauchno-prakticheskaja konferencija «Evropa i tjurkskij mir: nauka, tehnika i tehnologii» //g. Stambule (Turcija) 1-3 maja 2019 g. 283 str

4. Shamisheva A.S., Shazhdekeeva N.Қ. Differencialdyқ teңdeulerdің graftar arқyly keskіnі // Bіlіm – ғylym - қoғam: Өzarayқpaldastyқ mәselelerі men perspektivalary atty Halyқaralyқ ғylymi-praktikalyқ konferencijasynyң materialdary, 1-bөlіm. – 2013 zh. – 531-534 b.

5. Shamisheva A.S., Shazhdekeeva N.Қ. Graftardy differencialdau // «Bektaev oқulary-1: Aқparattandyru – Қoғam Damuynyң bolashaғy» atty Halyқaralyқ ғylymi-tәzhіribelіk konferencijasynyң materialdary, 2-bөlіm. – 2014 zh. – 335-340 b.

6. Zhapsarbaeva L.K., Kanguzhin B.E., Konyrkulzhaeva M.N. Samosoprjazhennye suzhenija maksimal'nogo operatora na grafe. // Ufimskij matematicheskij zhurnal. Tom 9. № 4 (2017). S. 36-44.

7. Pokornyj Ju.V., Penkin O.M., Prijadiev V.L. i dr. Differencial'nye uravnenija na geometricheskih grafah. M.:Fizmatlit. 2005. – 272 s.

8. Shazhdekeeva N.K., Zhakatay E.S. Statement of the boundary value problem on the graph// MNIZh – 2020. – № 2 (92). - p. 40-43

9. Sonja C. Spectral theory of differential operators on graphs.University of the Witwatersrand, South Africa, 2005. – 130 p.

10. Carlson R. Adjoint and self-adjoint differential operators on graphs, Electronic J. Differential Equations, 1998 (1998), No. 06, 1-10.

11. Harmer M. Hermitiansymplectic geometry and extension theory, J. Phys. A: Math. Gen., 33 (2000), 9193-9203.

12. Kostrykin V., SchraderR., Kirchhoff’s rule for quantum wires, J. Phys. A: Math. Gen., 32 (1999), 595 - 630.

13. Yoshida K. Functional Analysis, Springer-Verlag, Berlin Heidelberg New York, 1980.

14. Weidmann J. Linear Operators in Hilbert Spaces, Springer-Verlag, 1980.


Review

For citations:


Zhakatay E.S., Shazhdekeeva N.K., Raissov A.B. TRANSFORMATION OF A BOUNDARY VALUE PROBLEM ON A GRAPH INTO A BOUNDARY VALUE PROBLEM FOR A SYSTEM. Bulletin of the Khalel Dosmukhamedov Atyrau University. 2020;59(4):126-132. (In Kazakh) https://doi.org/10.47649/vau.2020.v59.i4.18

Views: 309


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2077-0197 (Print)
ISSN 2790-332X (Online)